
Scenarios - Scenario - secure analytics platform

[PDF generated October 31 2024. For all recent updates please see the Nutanix Bible releases notes located at https://

nutanixbible.com/release_notes.html. Disclaimer: Downloaded PDFs may not always contain the latest information.]

In this scenario we will design a secure analytics platform ingesting data from various external and internal sources and ETL'ing

into a data lake where analytics are performed.

Given the scope of this being very large and proprietary, only the security aspects of the platform will be discussed in the first

iteration.

At a Glance

Key Requirements

Environment must be highly secured through all layers (network, application, etc.)

Access must be scoped to specific enclaves / users

Must consume data from both internal and external sources

Configuration must be automated

User management / RBAC must be 100% automated

Data must be encrypted

Solution Components

Front-End: Tableau

Service Catalog: Service Now

Approvals: Slack / Email -> ServiceNow

Configuration Automation: Puppet

Database: Apache MySQL / extensible

ESB / ETL: Custom + Apache Kafka

Analytics: Custom

Platform

Hypervisor: Nutanix AHV

Encryption: Nutanix software encryption

Microsegmentation: Nutanix Flow

Compute + Storage + Network (virtual): Nutanix

The following shows a high-level view of the solution layers and data flows:

Scenario - Secure Analytics Platform

•

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

◦

Security Architecture

As mentioned in the 'Security and Encryption' section, security occurs at multple levels ranging from data to systems to people.

In the following we will cover how we hardened each of these components at a high-level.

Networking & Communication

When it comes to networking and communication we need to ensure only known / secure enclaves were able to get access to

the systems and data flows outbound are restricted.

We achieved this using a few items in alignment:

All configurations are 100% automated using Puppet

All policies are whitelist only

Only truted enclaves are allowed inbound on specific ports

All developer access flowed through a single jump box

MySQL users / grants were scoped to specific user / IP addresses combinations

Firewalld rules secured the Linux firewall

Nutanix Flow secured the virtual / physical network layer

The following shows the Flow policies for the dev/staging/production environments:

Scenario - Secure Analytics Platform - Flow Policies

Only specific ports / protocols were allowed between application tiers and inbound:

Scenario - Secure Analytics Platform - Flow Policy Detail

Categories were leverated to specify app tiers and environments. Only certain ports were allowed between:

•

•

•

•

•

•

•

Scenario - Secure Analytics Platform - Policy Categories

Here's a sample look at a Flow policy for dev which shows the allowed inbound sources. It also highlights the blocked

connections which coincidentally were from an internal pentesting tool:

Scenario - Secure Analytics Platform - Flow Policy Detail

Systems and Configuration

When it comes to the stack there were a few core layers:

Application / Services

VMs / Containers

Infrastrucutre (Nutanix)

The full stack was 100% automated using Puppet, Nutanix SCMA and environment templates. This allowed us to ensure security /

configuration baselines and adherance to them. This also allowed us to simply update packages if any security vulnerabilities

were found.

Within the Nutanix platform the native SCMA was leveraged (enabled by defualt) which ensures a STIG'd / secure configuration

for the CVMs and hosts. Cluster lockdown mode was enabled (recommended) to force key based access.

Secrets

With any platform that is integrating with multiple systems, secret management is a very important item. Initially we started

with using encrypted yaml (eyaml) within Puppet but eventually moved this to a more secure / manageable hiera backend.

There are multiple options here like HashiCorp Vault, etc.

Data Encryption

Data encryption is important to ensure an attacker can't make any sense of the data if they were to steal or become in posession

of it.

Native Nutanix software-based encryption was leveraged to provide data encryption. In scenarios where a key manager isn't

available, the local key manager (LKM) can be leveraged. If using an external key manager (EKM) it is recommended to rotate

keys, this occurs yearly with the LKM by default.

•

•

•

Scenario - Secure Analytics Platform - Data Encryption

Data Scoping and RBAC

One of the most important things once the "stack" has been hardened, is ensuring only specified individuals get access to the

data they should have access to and all access / requests / granting is fully auditible. From my perspective the only way to

accurately do this is through a fully automated system where any granting of access, approvals, etc. has to flow through the

automation and nothing can be done manually. This is exactly what we did with Project Earth, even as admins, we can't override

access for users.

If we break this down there are a few core stages:

Requesting / inheriting access

Approving / denying access

Validation & Q/A

Revocation

Auditing

For all requests and ticketing we leverage ServiceNow (SNOW). Within SNOW we created a custom catalog in which users could

request access to specific types of data. The available types of "roles" / data available are automatically generated and published

to SNOW whenever new data sources / roles are created.

Once requested, it would go to their manager for approval and then two other approvers who must approve before any access is

granted. This "dual key" approval ensured proper checks and balances. Another key point here is that the time which people

could request access for was limited and could be revoked at any time. Upon expiration / revocation, membership was

automatically removed.

Once the request was approved the role assignment / group membership was fully automated.

The following figure shows a high-level view of the flow:

•

•

•

•

•

Scenario - Secure Analytics Platform - RBAC / Role Assignment

For validation we have checks to ensure members of a group match the "approved" state in SNOW. All authentication / access

requests are logged and stored in a central logging system. Using this system we could look for anomalous access or things out

of the ordinary.

Change Control

A key for auditibility is proper change control throughout all aspects of the system. For requests / approvals those were all stored

in SNOW. All other items whether it be Puppet, custom logic and code, etc. were all kept in a hardened source control system

with only specific developers / keys have access. Any modifications/ new code first went through a code review process / security

validation. Once reviewed / approved the changes were put into "purgatory" until validation in dev / staging environments were

coplete. Any modifications to production systems are done using automation to ensure human error potential is minimized.

	Scenarios - Scenario - secure analytics platform
	At a Glance
	Security Architecture
	Networking & Communication
	Systems and Configuration
	Secrets
	Data Encryption
	Data Scoping and RBAC
	Change Control

